
Whole-Body Motion Control
Using Inverse Kinematics

 Lutz Freitag

Puppeteering Robots

Puppeteering Robots

Whole-Body Motion Control

Using Inverse Kinematics

Lutz Freitag
lutz.freitag@fu-berlin.de

Master’s Thesis
Freie Universität Berlin

Fachbereich Mathematik und Informatik

Advisors
Prof. Dr. Raúl Rojas

Prof. Dr. Daniel Göhring

Berlin, 9th Jun, 2016

Declaration of Academic Honesty

I hereby declare that this master’s thesis is my own work and has not been submitted in any
form for another degree or diploma at any university or other institute. Information derived
from the published and unpublished work of others has been acknowledged in the text and a list
of references is given in the bibliography.

Berlin, 9th Jun, 2016

Lutz Freitag

i

Abstract

This master’s thesis provides a conclusive derivation of the damp-
ened least-squares approach to inverse kinematics. Even though
this approach is widely researched the underlying mathematics are
not well covered. The dampened least-squares approach is proven
to be very versatile. It gives the ability to express motion in spa-
cial coordinates which renders motion creation much more feasible
in contrast to motion generation in joint-space. Inverse kinematics
can also be utilized as an abstraction to robot models and struc-
tures since motion in task space can be easily transferred to different
robots. In addition to the derivation this thesis discusses extensions
to the performance in terms of numerical stability, its uses for non-
trivial robot structures (e.g., loopy robots) and the incorporation
of nonlinear constraints. Furthermore, this thesis shows that the
dampened least-squares inverse kinematics outperforms analytical
approaches in terms of general usability.

ii

Acknowledgment

I want to express my gratitude to the entire FUmanoids team and all its former members. As
part of the team I had the possibility to gain knowledge in a lot of areas which I would have
missed otherwise – and I had a tremendous amount of fun! Also, I want to thank Marc Tous-
saint for inspiring me to get into the field of inverse kinematics, Raúl Rojas for supporting the
FUmanoids, Daniel Göhring for his everlasting patience when I want to discuss ideas, Simon
Gene Gottlieb for all the crazy adventures we had, Daniel Seifert for so many things I cannot
list here and all robots I had the chance to work with during my time with the FUmanoids.

Go FUmanoids!

iii

Contents

1 Introduction 1

2 Forward Kinematics 2
2.1 Representations of Rigid Robotic Systems . 2
2.2 Homogeneous Transformations . 3
2.3 Logic Representation of Articulated Systems . 5
2.4 Workspaces . 7

3 Inverse Kinematics 10
3.1 Related Work . 10
3.2 Newton-Raphson . 11
3.3 Derivation . 14
3.4 Moore-Penrose Pseudoinverses . 17

4 Jacobians 23
4.1 Programmatic Generation of Jacobians . 25

4.1.1 Configuration Tasks . 26
4.1.2 Pathed Tasks . 26
4.1.3 Location and Orientation Tasks . 26
4.1.4 Dynamics Tasks - Center of Mass . 28

4.2 Combining Jacobians – Simple Multiple Tasks . 29

5 The Stack of Tasks 32
5.1 Improving the Numerical Stability . 35
5.2 Combining Nullspaces . 36

6 Loopy Robots - Linear Constraints 38

7 Nonlinear Constraints 40

8 Conclusion and Future Work 44

iv

List of Figures

2.1 Examples of joint types . 2
2.2 Coordinate system B defined in A . 4
2.3 Example of an extrinsic and intrinsic transformation 5
2.4 Calculation of the transformation from joint 2 to joint 4 7
2.5 Redundant systems . 9

3.1 Inverse kinematics exemplified . 10
3.2 Newton-Raphson gradient descent to find the zero-crossing of a function 12
3.3 A non-convex function where the estimated zero crossing cannot be found but

oscillates around the actual zero crossing . 13
3.4 Dampened Newton-Raphson descent with ε = 0.75 14
3.5 Rank defect calculated by using the trace of the dampened range projector . . . 21
3.6 Rank defect calculated by using the trace of the exponentiated dampened range

projector . 22

4.1 Visualization of a Jacobian matrix . 24
4.2 Solving multiple tasks simultaneously . 30

5.1 Non-optimal utilization of motion within the nullspace of a task with higher priority 33
5.2 Optimal utilization of motion within the nullspace of a task with higher priority 35

6.1 A loopy robot with rhomboid enforced structure 38
6.2 Tree structure of a loopy robot . 39

7.1 Error function for nonlinear constraints . 40
7.2 Unilateral constraints . 43

v

Listings

4.1 Exemplary Jacobian calculation for 2 dimensional robots 27
4.2 Jacobian calculation for COM-tasks . 28
4.3 Inverse kinematics algorithm with augmented Jacobians and error vectors 31
5.1 Simple inverse kinematics algorithm incorporating the stack of tasks 37
5.2 Improved inverse kinematics algorithm . 37
7.1 Backtracking algorithm . 42
7.2 Inverse kinematics solver incorporating the stack of tasks and nonlinear constraints 42

vi

1 - Introduction

In many modern manufacturing processes robots increasingly gain popularity. For example, in
car manufacturing whole assembly lines are already completely automated by robots. Among
other tasks robots weld, cut and hold workpieces in a way that generates an overall streamlined
manufacturing process. What appears to be an overwhelmingly complex movement of several
robots interacting is usually a set of individual movements. The set of all individual move-
ments is orchestrated and synchronized in a way that gives the impression of robots working
in conjunction. At the very basic level robot’s movements are programmed in terms of joint
movements. This means for each time step each joint of every robot has a predefined value.
While this expression of movement creates suitable trajectories for manufacturing processes it
is not necessarily intuitive. Humans usually express movements in terms of body parts that
are spatially moved. Expressing where a hand has to move to in order to grasp something
is much more intuitive than expressing how the joints have to be moved to achieve the same
movement. Furthermore, a system can be built that compensates for different robot structures.
The mapping from a desired body part’s location to a posture is called inverse kinematics and
is quite extensively researched. However, even though inverse kinematics has been focused by
many researchers there is still a lack in the mathematical foundation.
This master’s thesis provides a conclusive derivation of the dampened least-squares inverse kine-
matics approach. An optimality criterion is introduced from which the basics of inverse kine-
matics are derived. Some – already commonly utilized – extensions are discussed and proven
to be optimal with respect to the optimality criterion and some extensions are proven to be
non-optimal. Additionally another extension that allows the utilization of loopy robots is intro-
duced. Lastly, approaches to nonlinear constraints (e.g., joint-limits) are discussed and a novel
technique to resolve those constraints is proposed.

1

2 - Forward Kinematics

Forward kinematics is the answer to the question:

Given a robot’s joint configuration:
Where is body part A located and oriented with respect to body part B?

With that in mind tools to represent perspectives as well as locations and orientations of body
parts can be derived. This will give the spatial representation of postures.

2.1 Representations of Rigid Robotic Systems

Commonly robots are built in a treelike structure [1]. Nodes represent body parts that are
themselves connected to other parts of the body creating a loop-free topology.
The most widespread representation of robotic systems used in the literature as well as in soft-
ware are robots composed of rigid links and joints. Joints connect links and represent the robot’s
degrees of freedom. The concept of joints and links, however, originates in physics simulations
where links represent single bodies (with physical properties). Joints connect the bodies thus
limit their degrees of freedom in terms of spatial movements. Joints do not necessarily need to be
articulated; they can represent passive connections between links as well. Also, they represent
the actual type of connection between body parts e.g., prismatic, revolute, combined-revolute
etc. Some examples of joint-types are displayed in figure 2.1.

(a) hinge/revolute joint (b) piston/prismatic joint (c) ball/universal joint

Figure 2.1: Examples of joint types

2

2.2 - Homogeneous Transformations

For each degree of freedom a joint has a value – the angle of a revolute joint, three angles
for a ball-joint or the stroke of a piston. The set of all joint-values of a robot is the robot’s
configuration or posture.
The joint-link-representation would also allow the construction of loopy systems. Those are
systems that do not have a treelike structure but contain loops in terms of graphs. When using
any spanning tree from the loopy system an equivalent system can be created. Chapter 6 shows
that treelike robots can be made to behave exactly the same way as loopy robots. Without any
loops the robotic system has a tree structure which guarantees there exists exactly one direct
path between two body parts.
To describe the spatial posture of a robot links are actually not necessary. An equivalent
construction of a joint1-link-joint2 system can be accomplished by letting joint1 have link

and joint2 as children. In the latter system link can be expressed as a dummy-joint without
any degrees of freedom. The connection between joint1 and link now does not serve any
articulated purpose but dummy-joints can be used to represent useful body parts like fingertips
or cameras which are offset-attached to an articulated joint.
Lastly, without loss of generality, joints can be split into a series of elementary joints [1]. E.g.,
a ball joint can be constructed from three revolute joints. By splitting combined joints into
elementary joints an order has to be be defined in which they act upon the affected body parts’
positions and orientations. An example how a ball joint can be split into three subsequent
transformations with the rotation angles α, β, γ is shown in figure 2.1c. Note that the coordinate
frames are offset to the actual point of rotation to better display the transformations. Any node
or joint in the previously mentioned tree structure represents a body part. From here on the
term effector will be used for nodes.

2.2 Homogeneous Transformations

Nested coordinate systems can be interpreted as transformations that convert points from the
perspective of coordinate system A to another coordinate system B.

Example

Figure 2.2 displays a 3D-coordinate system B that is located at oB =

1
2
3

 and with αz = 45◦

counterclockwise rotation around the z-axis as seen from a coordinate system A.
A point pB seen from coordinate system B can be transformed into coordinate system A by
applying:

pA = RB ∗ pB︸ ︷︷ ︸
rotate pB to A

+ oB︸︷︷︸
offset of B

pA =

1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 ∗ pB +

1
2
3

 (2.1)

RB is the rotation matrix that rotates points from B to A and oB is the location of the coordi-
nate frame B as seen from A.

3

2.2 - Homogeneous Transformations

xA

yA

zA

oB

xB

yB

zB

αz

Figure 2.2: Coordinate system B defined in A

To get an equivalent but more compact formulation of equation (2.1) any point p can be aug-
mented with an additional row with the value 1 to get p̂ and introduce the homogeneous Trans-
formation ATB:

ATB =

(
RB oB
0 1

)
and p̂ =

(
p
1

)
ATB is a commonly used notation [2] that will also be used thoughout this thesis to denote
transformations from a coordinate frame B into the coordinate A.
With that equation (2.1) can be reformulated:

(
pA
1

)
= p̂A =

(
RB oB
0 1

)
∗ p̂B =

1√
2
− 1√

2
0 1

1√
2

1√
2

0 2

0 0 1 3
0 0 0 1

 ∗
(
pB
1

)
(2.2)

Homogeneous transformations can also be utilized to express relationships (perspectives) of coor-
dinate frames that are indirectly connected. Here transformations are multiplied in the sequence
the coordinate frames are related to each other as shown in equation (2.5). Since homogeneous
transformations can be used to unify a sequence of transformations into a single transformation
they can also be decomposed into a subsequent series of rotations and translations.

ATB =

(
ARB

AoB
0 1

)
=

(
0 AoB
0 1

)
∗
(
ARB 0

0 1

)
(2.3)

This means every transformation of the above form can be easily deconstructed into a translation
and a rotation that need to be applied in that order to create the original transformation. This
also means that any complex joint type can be constructed by a set of primitive joints – revolute
and prismatic joints – which are working serially.

4

2.3 - Logic Representation of Articulated Systems

2.3 Logic Representation of Articulated Systems

A robot’s posture may be defined as a vector of joint configurations q (e.g., angles, strokes, etc.)
where each element corresponds to one degree of freedom of the robot. Two transformations
can be defined for each joint:

• extrinsic transformation T ext
The offset position and orientation where a joint is attached to its parent effector. This
matrix is not dependent on the robot’s configuration and defines the robot’s effector layout
(offsets). The matrix in equation (2.2) is an example of an extrinsic transformation.

• intrinsic transformation T int
The transformation that is applied by the joint itself. For revolute joints this is a rotation
matrix and for prismatic joints a translation matrix. For fixed effectors this matrix is the
identity.

For convenience the extrinsic transformation should be defined in a way that the intrinsic trans-
formation becomes the identity for qi = 0. That is when the value at the i-th joint is 0. This
will prove to be useful in chapter 4.

iT j = iT jext ∗ Tj int (qj) (2.4)

The matrix iT j transforms from the j-th into the i-th coordinate system where the i-th effector is
the j-th effector’s parent. It is easy to see that the description is forward with respect to the tree
structure – when traversing from effector i to j (e.g., from the robot’s root to one of its children)
the static offset transform (extrinsic) has to be applied first and then the intrinsic transformation.
Furthermore, iT j solely depends on qj . An example for this sequence of transformations is given
in figure 2.3.

x1

y1 1T 2ext

x′2

y′2
T2int(q2)

x2

y2

q2

Figure 2.3: Example of an extrinsic and intrinsic transformation

Note that the inverse (backward) transformation is:

jT i = iT j
−1

=
(
iT jext ∗ Tj int (qj)

)−1
= Tj int (qj)

−1 ∗ iT j
−1

ext
= Tj int (qj)

−1 ∗ jT iext

The intrinsic transformations for the joints in figure 2.1 are:

• hinge/revolute joint rotating around unit vector #»v with angle α:

c = cosα

5

2.3 - Logic Representation of Articulated Systems

s = sinα
#»v 2
x(1− c) + c #»v x

#»v y(1− c)− #»v zs
#»v x

#»v z(1− c) + #»v ys 0
#»v x

#»v y(1− c) + #»v zs
#»v 2
y(1− c) + c #»v y

#»v z(1− c)− #»v xs 0
#»v x

#»v z(1− c)− #»v ys
#»v y

#»v z(1− c) + #»v xs
#»v 2
z(1− c) + c 0

0 0 0 1

• piston/prismatic joint with jerk α and direction

#»

d :
0 0 0

α
#»

d0 0 0
0 0 0
0 0 0 1

• ball/universal joint with angles α, β and γ:

1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

 ∗

cosβ 0 sinβ 0
0 0 0 0

− sinβ 0 cosβ 0
0 0 0 1

 ∗

cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 0 0
0 0 0 1

Note that the transformations are sequential. The rotation axis of the second transforma-
tion is defined by the first rotation while the rotation axis of the third transformation is
defined by the first two transformations.

To calculate the (forward) transformation from an arbitrary effector i to any other body part j
the function φ is defined as:

iφj (q) = iT j =
∏
k,l

k parent of l

kT l (2.5)

Here one traverses along the path (also referred to as kinematic chain) from the i-th effector
to the j-th effector and multiplicatively accumulate each subsequent transform. The order in
which the transforms are multiplied is important and must follow the path. Since the robot is
constructed as a tree structure there exists only one path for each i, j combination.

Example

Figure 2.4 displays the structure of a two dimensional robot with two arms. There are three
revolving degrees of freedom at the effectors 2, 3 and 4. Effectors 3 and 4 are attached to effector
2 behind its intrinsic rotation. Effector 2 is attached to a fixed base at the origin. The forward
extrinsic transformations are drawn along the topology vectors in the figure. Note that due to
readability the intrinsic transformations are not displayed but depicted as rotations within each
node as qi. The transformation 3T 4 can be constructed as:

6

2.4 - Workspaces

x1

y1 1T 2ext

x′2

y′2

q2

x2

y2

2T 3ext

x′3

y′3

q3

x3

y3

2T 4ext

x′4

y′4

q4

x4

y4

Figure 2.4: Calculation of the transformation from joint 2 to joint 4

3T 4 = 3T 1 ∗ 1T 4

= 1T 3
−1 ∗ 1T 4

=
(

1T 2 ∗
2T 3

)−1 ∗ 1T 2 ∗
2T 4

=
(

1T 2ext ∗ T2int ∗ 2T 3ext ∗ T3int

)−1 ∗ 1T 2ext ∗ T2int ∗ 2T 4ext ∗ T4int

= T3int
−1 ∗ 2T 3ext

−1 ∗ T2int
−1 ∗ 1T 2ext

−1 ∗ 1T 2ext ∗ T2int ∗ 2T 4ext ∗ T4int

= T3int
−1 ∗ 2T 3ext

−1 ∗ 2T 4ext ∗ T4int

= 2T 3
−1 ∗ 2T 4 (2.6)

As shown above the traversal to the robot’s root node is not necessary since those forward
and backward transformations cancel each other out. The remaining transformations are the
traversal along the shortest path between node 3 and 4 being the sequence {3→ 2; 2→ 4}.
Equation (2.6) also shows that the intrinsic transformation within the node 2 does not affect
the transformation from 3 to 4.
The methods described in this section allow the calculation of locations and orientations of body
parts with respect to other body parts. An orientation and location is expressed with a single
homogeneous matrix.

2.4 Workspaces

The space of all possible locations and orientations of an effector is called workspace. It is the
space where an effector b can be moved to and rotated with respect to another effector a.
The matrix Jaφb(q) maps the robots degrees of freedom to the degrees of freedom of aφb when

7

2.4 - Workspaces

being in posture q [3].

Jaφb(q) =
d

dq
aφb(q) =

δ
δq1

aφb(q)1
δ
δq2

aφb(q)1 . . . δ
δqn

aφb(q)1
δ
δq1

aφb(q)2
δ
δq2

aφb(q)2 . . . δ
δqn

aφb(q)2

...
...

. . .
...

δ
δq1

aφb(q)k
δ
δq2

aφb(q)k . . . δ
δqn

aφb(q)k

 (2.7)

The index i at aφb(q)i denotes the i-th degree of freedom of aφb(q). The matrix Jaφb(q) is the
local linearization of aφb at posture q. Iff Jφ has full rank (coldim(J) = rank(J)) each degree
of freedom in aφb(q) can be served. However, Jaφb(q) is dependent on q and its base vectors
can become linear dependent for some q. This happens when the robot leaves the dexterous
workspace and enters the reachable workspace. An example might be a fully stretched human
arm (including the index finger): The arm (and finger) cannot be fully stretched while having
the index finger pointing back to the shoulder. This translates to the incapability of rotating
the finger arbitrarily when the arm is fully stretched.
In general workspaces can be classified by their respective degree:

deg(aWb) = rank Jaφb(q) − coldim(Jaφb(q)) (2.8)

• The dexterous workspace: is the space where all degrees of freedom of aφb(q) can be served
by the chain between effectors a and b. The dexterous workspace has the degree 0.

• The reachable workspace: is the extended space where only a reduced set of the degrees
of freedom of aφb(q) can be served. The reachable workspace can be subdivided into
subspaces with decreasing degrees until no degree of freedom of aφb(q) can be served.
Therefore, the reachable workspaces are of degree −1 to −n.

The joint set of all reachable workspaces of effector b with respect to effector a is denoted as:

aRb =
{aφ(q)b|∀q

}
(2.9)

The dimension of aRb is the degrees of freedom of aφb. For robots in 3 dimensional space this
translates to 6 degrees of freedom and 3 degrees of freedom for planar robots1. aRb can be split
into subspaces with different properties regarding each Jaφb(q). The dexterous workspace aWb is
a subset of aRb. Within the dexterous workspace the degree-of-freedom matrix Jaφb(q) has full
rank.

aWb =
{
aφ(q)b| coldim(Jaφb(q)) = rank(Jaφb(q))

}
(2.10)

When the kinematic chain between two effectors a and b contains redundant effectors – joints
whose columns in Jaφb(q) are linear dependent – thenW contains duplicate instances of the same
aφb.
This applies to all:

aφb(q1) = aφb(q2) (2.11)

1The workspace of 1 dimensional (linear) robots has one degree of freedom.

8

2.4 - Workspaces

where:

q1 6= q2 and
aφb(q1) ∈ aWb and
aφb(q2) ∈ aWb

For all q where (2.11) is fulfilled the system has redundant effectors. Thus some effector locations
and orientations can be reached with multiple postures. Figure 2.5a displays such a configuration
and the workspaces of the robots effectors. Effector 3 can be placed at a single location with
two different configurations. The fact that effector configurations can be reached by either a
finite – for redundant systems – or infinite number – for hyper redundant systems – of joint
configurations renders inverse kinematics into a nontrivial problem. A hyper redundant system
is shown in figure 2.5b.

1

2

2′

3

1W2
1W3

3W
2

(a) Redundant configuration of a three-degree-
of-freedom system (there is a revolute joint in 3
without a lever) and the workspaces W

(b) Hyper-redundant robot with several pos-
tures where the finger resides on the same lo-
cation.

Figure 2.5: Redundant systems

In figure 2.5a 1W2 and 3W2 are circles but 1W3 is an circular area – the dotted area. At the
boundary of 1W3 – where the arm is fully stretched – rank(J1φ3(q)) = 2 while inside the dotted

area (not at the border) rank(J1φ3(q)) = 3. This shows that inside the dotted area the robot is

in the dexterous workspace (degree 0) and the boundary of this area is the reachable workspace
(degree −1).

9

3 - Inverse Kinematics

Inverse kinematics is the answer to the question:

Given a robot’s joint configuration and a target state:
How must the robot’s posture be changed to achieve the target state?

Figure 3.1: Inverse kinematics exemplified

Figure 3.1 illustrates an inverse kinematics problem. The target state in the example is the
position of the robot’s finger – the box at the end of the kinematic chain. The dashed posture is
the initial posture – where the finger is far away from the target state (denoted with the dotted
vector) – and the solidly drawn posture is where the robots finger reached the target location.
Target states can be any property of the robot like positions, rotations or even more complex
configurations. However, inverse kinematics is highly dependent on the robot’s structure. As
seen in section 2.4 solutions to the general inverse kinematic problem are usually not trivial due
to the ambiguity of some elements in the workspace. This chapter will show approaches to solve
the inverse kinematics problem.

3.1 Related Work

In real world robot applications there are almost as many inverse kinematic approaches as there
are research groups working on robots. An overview about inverse methods is given by Waldron
et al. [4]. They subdivided methods to solve the inverse kinematics problem into the following:

10

3.2 - Newton-Raphson

• Closed-form methods:
The inverse of φ(q) is expressed as an equation system which can be solved either by
inverse trigonometric functions or by dividing the problem along the kinematic path into
subproblems which can be solved independently. Closed-form solutions do not exist for
arbitrary robots. They can be further divided into two subclasses:

– Algebraic

– Geometric

• Numerical methods:
In an iterative process the inverse of φ(q) is approximated. For each step q is adjusted to
bring the target effector closer to φtarget. Waldron et al. divide numerical methods into
three subclasses:

– Symbolic elimination

– Continuation

– Iterative methods

Closed-form methods are advantageous when the robot has a serial chain structure with up to
six degrees of freedom and when the end effector does not leave the dexterous workspace [3, 5].
In this case the robot has the same amount of freedom as φ which renders the inverse kinematics
problem analytically solvable. With this any solution (if there is any) can be found in a fixed time
frame. Even the nonexistence of a solution – e.g., when the target state is outside W – can be
found in that fixed time frame. When working on arbitrary robots – especially robots with many
redundant effectors – closed-form methods are not applicable [5]. Contrary, numerical methods
can be utilized for arbitrary robots but have the disadvantage that they need to converge and
that the nonexistence of a solution cannot be determined in general. They also do not guarantee
to converge on a solution – even if a solution exists. The fact that analytical methods cannot
be generalized to arbitrary robots does not outweigh the disadvantages of numerical methods.
This renders analytical methods inferior to numerical methods.
The goal of this master’s thesis is to derive an inverse kinematics approach for arbitrary robots.
The foundation to the approach discussed here was outlined by Donald Lee Pieper in 1968
[5]. In his Ph.D thesis several approaches to generate motion for different types of robots have
been introduced including analytical as well as numerical techniques. He also discussed Newton-
Raphson techniques to approximate inverse kinematics on multiple hyper redundant robotic
systems and this technique’s performance. His work can be seen as the foundation to most
modern inverse kinematics approaches.

3.2 Newton-Raphson

The idea behind the Newton-Raphson technique is to iteratively approximate the zero-crossing
of a function f . f can be any function; even functions where zero-crossings cannot be calculated
directly. As an example in terms of inverse kinematics f can be the forward kinematics of a
robot’s finger minus the target position. The posture for which f = 0 is the posture where the
finger reached the target.
Starting at an arbitrary x0 one calculates the function’s local derivative at x0: δ

δxf(x0) and
value f(x0) yielding the local tangent. This is also referred to as local linearization of f at x.

11

3.2 - Newton-Raphson

The process continues with x1 at the zero-crossing of the tangent derived at x0. Those steps
are repeated until the error f(xi)

2 is less than a threshold. Figure 3.2 displays four iterations
of this process.

-1 0 1 2 3 4
-2

-1

0

1

2

3

x

f(
x)

(a) 1st iteration - f(x)2 = 1.7189

-1 0 1 2 3 4
-2

-1

0

1

2

3

x

f(
x)

(b) 2nd iteration - f(x)2 = 0.66603

-1 0 1 2 3 4
-2

-1

0

1

2

3

x

f(
x)

(c) 3rd iteration - f(x)2 = 0.016479

-1 0 1 2 3 4
-2

-1

0

1

2

3

x

f(
x)

(d) 4th iteration - f(x)2 = 5.2229 ∗ 10−9

Figure 3.2: Newton-Raphson gradient descent to find the zero-crossing of a function

The tangent txi(x) at f(xi) and the tangent’s zero-crossing xi+1 can be calculated with:

txi(x) =

slope︷ ︸︸ ︷
δ

δx
f(xi)x+

y-offset︷ ︸︸ ︷
f(xi)−

δ

δx
f(xi)xi (3.1)

xi+1 =
δ
δxf(xi)xi − f(xi)

δ
δxf(xi)

(3.2)

It is important to acknowledge that at local minima of f the tangent’s slope might become 0.
Therefore, the zero-crossing of the tangent would be at infinity. This is especially problematic
when the function does not have a zero-crossing at all. Up to a certain iteration the gradient
descent would find xi+1 with f(xi+1) < f(xi). But eventually f ’s slope at some xi+n is less

12

3.2 - Newton-Raphson

than f ’s value at xi+n which results in poor performance in terms of convergence. However, if
f is a convex function and has at least one zero-crossing then Newton-Raphson is guaranteed to
converge on one of the zero-crossings. Figure 3.3 displays a situation with a non-convex function
where Newton-Raphson does not converge but oscillates around the actual zero crossing.

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

x

f(
x)

(a) 1st iteration - f(x)2 = 1

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

x
f(
x)

(b) 2nd iteration - f(x)2 = 1

Figure 3.3: A non-convex function where the estimated zero crossing cannot be found but
oscillates around the actual zero crossing

To mitigate poor rates of convergence equation (3.2) can be extended to include a dampening
term. This extension is also referred to as dampened Newton-Raphson technique:

xi+1 =

(
δ
δxf(xi)xi − f(xi)

)
δ
δxf(xi)

δ
δxf

2(xi) + ε
(3.3)

ε is the dampening factor. It is easy to see when ε approaches 0 the dampened gradient descent
becomes the original Newton-Raphson. Figure 3.4 shows the same function and starting con-
dition as Figure 3.3 but uses the dampened Newton-Raphson. The dampened version does not
oscillate and converges quickly to f ’s zero crossing.

13

3.3 - Derivation

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

x

f(
x)

(a) 1st iteration - f(x)2 = 0.011331

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

x

f(
x)

(b) 2nd iteration - f(x)2 = 3.4593 ∗ 10−05

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

x

f(
x)

(c) 3rd iteration - f(x)2 = 1.5551 ∗ 10−11

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

x

f(
x)

(d) 4th iteration - e2 = 1.3324 ∗ 10−28

Figure 3.4: Dampened Newton-Raphson descent with ε = 0.75

In figure 3.4 the dashed line represents the tangent for the current iteration whereas the fine
dashed line marks the dampened tangent. The error is calculated as the square of the function’s
value at the dampened tangent’s zero-crossing.
In the next section a loss function will be introduced. The process of finding the zero-crossing
of this loss function – that is the location where the error is 0 – is implemented following the
pattern described in this section.

3.3 Derivation

Even though inverse kinematics is broadly researched a conclusive derivation that proves opti-
mality of commonly used equations is seldomly shown [6]. This is remarkable as derivations of
the Newton-Raphson technique are the most dominant inverse kinematics approaches utilized
[7]. The goal of this section is to close this gap by providing a conclusive step-by-step derivation
of the most commonly utilized dampened least-squares inverse kinematics approach [3, 6–22].
Also, with the derivation a foundation of optimality assertions can be laid out. This section
follows mostly the lecture held by Toussaint [23] on robotics where a derivation was outlined

14

3.3 - Derivation

similarly as indicated by Gienger et al. [24].
The process of approximating an effector to a target state – for instance, move the robot’s finger
to a specific location – can be considered a task. A task is defined within the perspective of an
effector (the base effector) and contains information about the involved effectors to be solved, a
function ψ which maps the robot’s configuration q to a state y as well as the target state y∗.

ψ(q)→ y (3.4)

Task types might be:

• Location:
Move an effector to a position with respect to another body part. The involved effectors
are all effectors along the path between the base effector and the task’s end effector. ψ(q)
is the translation part of φ(q).

• Orientation:
Align the orientation of an effector with a given rotation. The involved effectors are also
along the path between the base effector and the end effector. Here ψ(q) is the rotation
part of φ(q).

• Center of mass:
Move the center of mass to a location as seen from the base effector. All effectors of the
robot are involved in this task. In this case ψ(q) maps the robot’s configuration to the
location of the center of mass. Note center of mass tasks do not have a real end effector
but uses a property of the whole robot instead.

• Configuration:
Move an effector i to a defined value qit.
For this task type the state mapping function is:
ψ(q) = qi

As shown earlier each task would be easily solvable if ψ−1 would exist. However, for arbitrary
robots and tasks this is not the case [18]. Instead of looking for ways how ψ can be inverted it is
possible to reformulate the inverse kinematics problem as a least-squares optimization problem
that can be minimized using the Newton-Raphson descent technique introduced in section 3.2.
To solve a task the robot has to adjust its posture in a way that the target state is reached – or
at least approximated. The change of the posture is denoted as ∆q. The difference between the
target state y∗ and the current state is the error #»e = y∗−ψ(q). The change in posture shall be
as little as possible while the target state should be reached. This can be rewritten as a square
loss function L:

L(∆q) = ||y∗ − ψ(q + ∆q)||2C + ||∆q||2W (3.5)

The notation ||a||2B represents the square norm of a with the weighting matrix B:

||a||2B = aTBa

C weights the importance in task space. Since the solution of the task is of paramount impor-
tance C is set to ∞. W weights the usage of active effectors to solve the task. Since C clearly
dominates in (3.5) W can be set to I. If movements on specific effectors shall be suppressed the
corresponding main diagonal entry in W can be set to a high value.

15

3.3 - Derivation

The ∆q̂ minimizing L is the solution of the task:

∆q̂ = argmin
∆q̂

L(∆q̂) (3.6)

As long as y∗ is reachable in terms of ψ the loss function suffices the optimality criterion of the
Newton-Raphson gradient descent and thus is solvable.
Analogous to the Newton-Raphson technique (3.3) ∆q̂ (in (3.6)) can be found by iteratively
approximating and accumulating ∆q. To achieve this, L has to be derived with respect to ∆q
and set to zero. Since the state mapping function ψ(q) is not trivially invertible – especially not
for arbitrary robots – it is necessary has to use the locally linearized derivative of ψ(q) at q 1:

lim
∆q→0

ψ(q + ∆q) = ψ(q) + J∆q (3.7)

Here J is the task’s Jacobian of ψ at q. Note that q is a parameter of J . When implementing
this inverse kinematics solver J has to be recomputed each time q changes.

δ

δ∆q
L(∆q) = 0 =

δ

δ∆q

[
||J∆q − #»e ||2C + ||∆q||2W

]
=

δ

δ∆q

[
(J∆q − #»e)TC(J∆q − #»e) + ∆qTW∆q

]
=

δ

δ∆q

[
(∆qTJT − #»e T)C(J∆q − #»e) + ∆qTW∆q

]
=

δ

δ∆q

[
∆qTJTCJ∆q − 2 #»e TCJ∆q + ∆qTW∆q

]
= 2JTCTJ∆q − 2JTCT #»e + 2W T∆q

= JTCTJ∆q − JTCT #»e +W T∆q

= (JTCTJ +W T)∆q − JTCT #»e

JTCT #»e = (JTCTJ +W T)∆q

∆q = (JTCTJ +W T)−1JTCT #»e (3.8)

∆q = W T−1
JT (JW T−1

JT + CT
−1

)−1 #»e (3.9)

(3.8) is the preliminary solution of the derivation. Due to C →∞ (3.8) is not numerically utiliz-
able. To transform (3.8) to (3.9) Toussaint [23] suggested to apply the Woodbury-Identity[25].
However, by utilizing the Woodbury-Identity one does not get (3.9). Yet it can be directly
shown that the equations (3.8) and (3.9) have to be equivalent:

(JTCTJ +W T)−1JTCT = W T−1
JT (JW T−1

JT + CT
−1

)−1 (3.10)

JTCT = (JTCTJ +W T)W T−1
JT (JW T−1

JT + CT
−1

)−1

JTCT (JW T−1
JT + CT

−1
) = (JTCTJ +W T)W T−1

JT

JTCTJW T−1
JT + JTCTCT

−1
= JTCTJW T−1

JT +W TW T−1
JT

JTCTJW T−1
JT + JT = JTCTJW T−1

JT + JT (3.11)

1This is the equivalent of the slope of the tangent introduced in equation (3.1).

16

3.4 - Moore-Penrose Pseudoinverses

Continuing with (3.9):

∆q = W T−1
JT (JW T−1

JT + CT
−1

)−1 #»e

With lim
C→∞

CT
−1

= lim
ε→0

εI and W = I:

∆q = lim
ε→0

JT (JJT + εI)−1 #»e (3.12)

∆q = J† #»e (3.13)

Here J† denotes the Moore-Penrose pseudoinverse [26] of J . Note the similarity between (3.12)
and the dampened Newton-Raphson (3.3). The dampening factor εI 6= 0 guarantees that (JTJ+
εI) is invertible since JTJ must be positive semidefinite and symmetric.
It is important to acknowledge that JT (JTJ + εI)−1 is not the “real” pseudoinverse of J but
approaches J† for ε → 0. In iterative inverse kinematics implementations a nonzero ε should
be chosen to avoid singularities where J does not have full rank and to dampen the iterative
solution process. Otherwise the iterations might jump around the actual solution due to the
non-convex nature of ψ where the local linearization produces overshooting ∆qs (see 3.3).
It is worth pointing out that the identity (3.10) is useful when dealing with least-squares opti-
mization processes that are in a form as in (3.8) and therefore numerically not solvable. That is
especially the case when a W−1 has to be used which does not have full rank. (3.10) can turn
those equations into a solvable form. This property will be utilized in chapter 5.

3.4 Moore-Penrose Pseudoinverses

Pseudoinverses are a generalization of inverses for non-square full rank matrices [26]. Any
nonsingular matrix A has a unique pseudoinverse with the four properties:

AA†A = A (3.14)

A†AA† = A† (3.15)

(AA†)T = AA† (3.16)

(A†A)T = A†A (3.17)

If A is square and has full rank A’s pseudoinverse is its inverse:

A† = A−1 (3.18)

The equations (3.16) and (3.17) show that any matrix multiplied with its pseudoinverse yields
a Hermitian matrix.
(3.14) can be expanded to:

AA†A = A

AA†A = AA†AA†A

AA† = AA†AA† (3.19)

and analogous for (3.15):

A†A = A†AA†A (3.20)

17

3.4 - Moore-Penrose Pseudoinverses

It becomes clear that the matrices AA† and A†A are idempotent. Here A†A is the orthogonal
range projector of the row space of A – further denoted asM – and AA† is the orthogonal range
projector of the column space of A. This means any vector multiplied to the right hand side to
AA† or A†A is projected orthogonally into the respective rangespace. The complement of the
range projector is the nullspace projector N :

NArow = I −AA† (3.21)

NAcol = I −A†A (3.22)

Any vector #»v multiplied to the right hand side of N is projected into the space that is not
spanned by either the columns or rows of A. Proof by showing the range of A is orthogonal to
the range of N :

0 = ANAcol
= A(I −A†A)

= A−AA†A apply (3.14)

= A−A

analogous for NAcol:

0 = NAcolA
= (I −AA†)A

= A−AA†A apply (3.14)

= A−A

The dampened Moore-Penrose pseudoinverses used in (3.12) overcome the constraint that A has
to be of full rank on the cost of accuracy. But as shown in section 3.2 this dampening is in fact
an intended feature. A different – and numerically more stable – way to build the pseudoinverse
is by using the singular value decomposition of J [11, 18, 27–29]:

J ∈ Rn×m

J = UΣV T (3.23)

with:

U ∈ Rn×n

Σ ∈ Rn×m

V ∈ Rm×m

Σ =

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . . 0

0 0 0 σn

18

3.4 - Moore-Penrose Pseudoinverses

U and V are orthogonal matrices and Σ is a diagonal matrix with J ’s singular values on the main
diagonal – in descending order. Using the singular value decomposition J† can be constructed
by:

J† = V Σ†UT

with:

Σ† ∈ Rm×n

Σ† = lim
ε→0

σ1

σ12+ε
0 . . . 0

0 σ2
σ22+ε

. . . 0
...

...
. . . 0

0 0 0 σn
σn2+ε

 (3.24)

Proof:

J† = JT (JJT)−1

= (UΣV T)T ((UΣV T)(UΣV T)T)−1

= V ΣTUT (UΣV TV ΣTUT)−1

= V ΣTUT (UΣΣTUT)−1

= V ΣTUTUT
−1

(ΣΣT)−1U−1

= V ΣT (ΣΣT)−1U−1

= V Σ†UT

In equation (3.24) ε is the dampening factor and chosen similar to the ε in the previously
introduced dampened pseudoinverse. Usually ε is chosen to be nearly 0 to approximate the
“real” pseudoinverse and still have some dampening.
The rangespace projector M can also be calculated using the singular value decomposition:

M = AA† = UΣV TV Σ†UT

= UΣΣ†UT (3.25)

Because U is an orthonormal matrix and Σ as well as Σ† are diagonal matrices where the
entries along the main diagonal are either σi and 1

σi
or 0 respectively (see (3.24)) the resultant

range projector of A is a matrix with the singular values of either 0 or 1. This also means
that the eigenvalues of the range projector (and the nullspace projector) are also either 0 or 1.
Furthermore, the determinant of UUT has to be 1 whereas the determinant of ΣΣ† is either 0
or 1. Therefore, the determinant of AA† is either 1 or 0 as well. This translates to A having full
rank or not [13].
Furthermore, because UUT = I:

trace(UΣΣ†UT) = trace(ΣΣ†)

19

3.4 - Moore-Penrose Pseudoinverses

and because σiσi
† ∈ 0, 1:

trace(UΣΣ†UT) = rank(ΣΣ†)

trace(UΣΣ†UT) = rank(AA†)

and because of rank(AA†) = rank(A):

trace(UΣΣ†UT) = rank(A)

trace(M) = rank(A)

(3.26)

The same applies to the trace of A†A. This means by calculating the trace of A’s range projector
one calculates the rank of A as well.
As the singular values approach 0 some base vectors of J become collinear or at least almost
collinear. When this happens the rank of J collapses which renders J singular. This is the case
at the transition from the dexterous to the reachable workspace and is typically not a continuous
transition. However, by utilizing the dampened pseudoinverse with ε 6= 0 of J the collapsing
rank can be made into a smooth transition. Figure 3.5 plots the trace of the range projector of
a matrix versus varying ε and versus an angle α between the base vectors of the matrix.

defect = dim(A)− trace(AA†
ε)

with

A =

(
1 cosα
0 sinα

)
A†

ε = AT (AAT + εI)−1

20

3.4 - Moore-Penrose Pseudoinverses

10−4

10−2

100

ε

-π
2

0

π
2

α

0

0.5

1

1.5

2

ra
n
k

d
e
fe
c
t

Figure 3.5: Rank defect calculated by using the trace of the dampened range projector

Figure 3.5 shows that for α 6= 0 the rank defect is 0 for sufficiently small ε. It also serves as a hint
on how to pick “good” values for ε as the height of the plot corresponds to the total dampening
in configuration space when utilizing the dampened pseudoinverse of a task’s Jacobian. Even
when a task’s Jacobian has full rank some dampening might be preferred to avoid overshooting
but for the sake of accuracy and quick convergence ε should be chosen as small as possible.
However, at near singular configurations trace(J)→ dim(J)− n it might be preferable to have
additional dampening.
As indicated above, the rank defect happens at the transition between a workspace of degree
−n to a different degree. By using the dampened range projector the transition can be detected
and the degrees of freedom that are about to become defective are in the nullspace projector of
JT . The detection of this transition can be utilized to prevent a task from moving further in the
direction where the rank loss would happen or to add an additional dampening of movements
near the border to any reachable space.
Furthermore, due to ε 6= 0 the dampened nullspace projector Nd is actually not idempotent.
Nd contains residual singular values that reflect ε as well as numerical inaccuracy. This can be
utilized to further modify the dampening behavior when in near singular configurations:

defect = dim(A)− trace((AA†
ε)
n) (3.27)

The exponent n creates a plateau in near singular configurations. In figure 3.6 this plateau and
its behavior with varying ε and exponents is displayed. The greater the exponent n the more

21

3.4 - Moore-Penrose Pseudoinverses

distinct the plateau becomes. This behavior will be used to improve numerical stability for the
utilization of nullspace projectors in chapter 5.

10−4

10−2

100

ε

-π
2

0

π
2

α

0

0.5

1

1.5

2

ra
n
k

d
e
fe
c
t

(a) n = 2

10−4

10−2

100

ε

-π
2

0

π
2

α

0

0.5

1

1.5

2

ra
n
k

d
e
fe
c
t

(b) n = 5

10−4

10−2

100

ε

-π
2

0

π
2

α

0

0.5

1

1.5

2

ra
n
k

d
e
fe
c
t

(c) n = 10

10−4

10−2

100

ε

-π
2

0

π
2

α

0

0.5

1

1.5

2

ra
n
k

d
e
fe
c
t

(d) n = 20

Figure 3.6: Rank defect calculated by using the trace of the exponentiated dampened range
projector

22

4 - Jacobians

This chapter explains the derivation of the local linearization of ψ(q) used in (3.7). ψ(q) is the
function that maps the robot’s configuration to the task space (some examples are shown in 3.1).
Figure 4.1 displays an example where ψ(q) is the location of a robot’s finger. In this example
the locally linearized derivative of ψ at q is a matrix where each column vector represents the
effect the corresponding effector to the location on the robot’s finger.
The column space of J spans the d-dimensional task space and the row space the configuration
space of the task. The number of columns of J is therefore the same as the number of active
effectors of the robot. The i-th column represents the i-th active effector. For all tasks of a
specific robot the number and mapping of the columns of J is fixed. The number of rows,
however, is dependent on the task. E.g., for 2-dimensional location tasks J has two rows; three
rows for 3-dimensional location tasks.
The general form of the Jacobian is:

J =
δ

δq
ψ(q) =

δ
δq1
ψ(q)1

δ
δq2
ψ(q)1 . . . δ

δqn
ψ(q)1

δ
δq1
ψ(q)2

δ
δq2
ψ(q)2 . . . δ

δqn
ψ(q)2

...
...

. . .
...

δ
δq1
ψ(q)d︸ ︷︷ ︸
∗1

δ
δq2
ψ(q)d︸ ︷︷ ︸
∗2

. . . δ
δqn
ψ(q)d︸ ︷︷ ︸
∗3

 (4.1)

∗1: effect of the first active effector on ψ(q)

∗2: effect of the second active effector on ψ(q)

∗3: effect of the n-th active effector on ψ(q)

23

4 - Jacobians

x

y

1ψ4
2ψ4

3ψ4

δ
δq1

1ψ4(q)

δ
δq2

2ψ4(q) δ
δq3

3ψ4(q)

Figure 4.1: Visualization of a Jacobian matrix

The Jacobian can also be interpreted as the translation between configuration-velocity q̇ = d
dtq

and task-velocity ψ̇(q) = d
dtψ(q) at posture q [2]:

ψ̇(q) = Jq̇ (4.2)

When recalling equation (2.7) it becomes clear that Jaφb(q) is the combined Jacobian for location
and rotation.

Jaφb(q) =

δ
δq
aφbx(q)

δ
δq
aφby(q)

δ
δq
aφbz(q)

δ
δq
aφbr1(q)

δ
δq
aφbr2(q)

δ
δq
aφbr3(q)

(4.3)

This also emphasizes that workspaces are in fact task specific.
The index i at aφbi denotes the i-th degree of freedom of φ(q).

Figure 4.1 shows an example where the task manipulates the 2D location of a robot’s finger and
the task space speed is the finger’s velocity vector. The figure also shows the column vectors of
J and the vectors aψ4 between each joint and the end effector (4) as well as the arcs where the
end effector moves when solely the corresponding joint is changed. The partial derivatives in
this posture are tangential vectors to the arcs with length of ||aψ4|| along the positive rotation
direction of each joint. The fact that the partial derivatives have to be the tangents on the arcs
makes it obvious that the partial derivative of a revolute joint i on the effector e is [2]:

δ

δqi
iψe(q) =

(
0 −1
1 0

)
iψe(q) (4.4)

24

4.1 - Programmatic Generation of Jacobians

3D case:

δ

δqi
iψe(q) = ri × iψe(q) = [ri]

iψe(q) (4.5)

The × operator used in (4.7) denotes the cross product between the rotation axis of the i-th
joint and the vector from this joint to the end effector and [ri] denotes the skew-symmetric
cross-product matrix of ri.
Analogous for prismatic joints:

δ

δqi
iψe(q) =

(
#»

d 0

)
Here

#»

d 0 is the normed direction vector along which the prismatic joint works.
Generally each joint has a transformation which can be utilized to build the corresponding entry
for the Jacobian matrix. This is the locally linearized derivative of the intrinsic transformation
at its base configuration (qi = 0) for q: δ

δqi
Tiint(qi = 0)

E.g., for two dimensional prismatic joints:

δ

δqi
Tiint =

δ

δqi

0 0
qi

#»

d
0 0
0 0 1

 =

0 0 #»

d
0 0
0 0 0

 (4.6)

And for revolute joints:

δ

δqi
Tiint =

δ

δqi

cos qi − sin qi 0
sin qi cos qi

0 0 1

 =

− sin qi − cos qi 0
cos qi − sin qi

0 0 1

 qi=0
=

0 −1
0

1 0
0 0 0

 (4.7)

The derivation for revolute joints conveniently generates the skew-symmetric matrix for the three
dimensional case used earlier but can be further generalized for higher and lower dimensions.
The representation of the transformations in (4.6) and (4.7) are slightly different to the notation
above ((4.4) and (4.5)). This is advantageous as they work for any homogeneous coordinate.
This notation simplifies the generation of Jacobians because tasks for translations and rotations
can be treated equally by using the corresponding column of the forward transformation from
each effector to the end effector. All columns in φ but the last denote directions (the direction
of the x, y and z axis) and have a 0 as last element while the last column represents a location
which is augmented with a 1. Since the last row of the locally linearized derived transformation
is constantly 0 for all joint types and it does not serve any purpose it can be dropped.

4.1 Programmatic Generation of Jacobians

For simple implementation tasks can be divided into specific types:

• Configuration Tasks — Tasks that control joints directly:
Those tasks are independent on a robot’s structure since their task space is the configura-
tion space. The default value task described in section 4.1.1 in such a task.

25

4.1 - Programmatic Generation of Jacobians

• Pathed Tasks — Tasks that rely on a robot’s structure but work along the path from one
effector to another effector:
Each of those tasks is calculated in a very similar fashion. Examples are tasks that operate
on the kinematic chain from the base effector to the end effector. The calculation of
Jacobians for this task is described in section 4.1.2.

• Dynamics Tasks — Tasks to control physical properties of a robot:
With this task types dynamic properties like the position of the center of mass or the
inertia can be manipulated 1. The task that controls the position of the center of mass is
described in section 4.1.4.

4.1.1 Configuration Tasks

The Jacobian for the default values task is the easiest to implement and does not depend on
the robot’s structure at all. Here the Jacobian has to fulfill the function: ψ(q) = qi where i is
the joint this task controls. J has only one row because it controls only one degree of freedom
of the robot.

J =

(
0 · · · 0 1︸︷︷︸

at index i

0 · · · 0
)

(4.8)

The error vector for this task type calculates as:

#»e = qit − qi (4.9)

qit denotes the joint’s target value.

4.1.2 Pathed Tasks

Pathed Tasks manipulate spatial properties of the kinematic chain from a base effector a to an
end effector b. Properties might be the location or rotation of b as seen from a or the position of
the combined mass of the chain. Since there is a single unique path between a and b those tasks
can be considered to work along a path (as described in 2.3) within the robot. Some effectors
might not be part of the path thus they cannot manipulate the task space and are reflected with
zeros in their respective columns of the Jacobians. Jacobians for pathed tasks are calculated by
traversing along the inverse path and at each traversal step filling in the corresponding column
in the Jacobian.

4.1.3 Location and Orientation Tasks

For those task types a path from the end effector to the base effector is needed. Note this task
actually works by utilizing the reversed version of the path that is used to calculate the current
value of the task. To calculate the jacobian it is necessary to walk along this reversed path from
the end effector to the base effector, accumulate the Jacobian and multiplicatively accumulate
the transformations from the current effector to b. The parameter dimension is a number between
0 and dim(φ)−1 and denotes the column of the forward transformation for which the derivative
should be built. E.g. for dimension = 0 the Jacobian is built that can manipulate the orientation
of the x-axis of the end effector with respect to the base effector and for dimension = dim(φ)-1
the end effector’s location.

1Controlling the inertia matrix in terms of inverse kinematics is possible but not part of this thesis.

26

4.1 - Programmatic Generation of Jacobians

Listing 4.1: Exemplary Jacobian calculation for 2 dimensional robots

1 def getJacobian(robot , path , dimension):

2 transform = np.matrix(np.eye(3, 3))

3 jacobian = np.matrix(np.zeros ((2, self.dof)))

4 for i in range(0, len(path)):

5 node , direction = path[i]

6 subtransform = np.matrix(np.eye(3, 3))

7 if direction == Direction.FROM_CHILD or \

8 direction == Direction.LINK:

9 subtransform = path[i -1][0]. getTransform ()

10 elif direction == Direction.FROM_PARENT:

11 subtransform = node.getBackTransform ()

12 transform = subtransform * transform

13 jacobian = subtransform [0:2 ,0:2] * jacobian

14
15 if direction == Direction.FROM_CHILD:

16 jacobian[:,node.idx] = node.getDerivative(transform[:, dimension])

17 elif direction == Direction.FROM_PARENT:

18 jacobian[:,node.idx] = -node.getDerivative(transform[:, dimension])

19 return jacobian

Algorithm 4.1 starts by initializing the Jacobian with zeros and transform with identity. transform

is a homogeneous transformation that contains the transformation from the current node in the
path to the end effector. Each element in path contains the node and information about the
traversal direction with respect to the structure of the kinematic tree. There are four cases for
the direction depending on which the calculations are slightly different:

• BEGINNING:
This is the first node in the path.

• FROM_CHILD:
The previous node in the path is a child of the current node.

• FROM_PARENT:
The previous node in the path is the parent of the current node. Here the node acts
inverted to the path’s perspective since it moves its parent instead of its children.

• LINK:
When the path contains traversal upwards as well as downwards this marks the node where
the turnaround happens. LINK-nodes are not part of the active nodes in the path since they
cannot move their children independently.

Depending on the direction of traversal the accumulation of the transform from the current
effector to the task’s end effector is slightly different. However, the way it is accumulated in the
algorithm guarantees that transform is correct as it follows the same pattern as when calculating
the forward transform as depicted in (2.5).
node is an instance of the abstract base class Node. Subclasses of Node implement the method
getDerivative(vec). Depending on the node type it is implemented as (4.7) or (4.6). At each
iteration of the for-loop the Jacobian is first transformed into the current node’s coordinate
frame. The transformation used (subtransform) is the rotation submatrix of the homogeneous
transformation from the previous node to the current node. The translation part of this matrix

27

4.1 - Programmatic Generation of Jacobians

does not influence J since derivatives of functions do not reflect offsets – translations would be
the equivalent to offsets here.

4.1.4 Dynamics Tasks - Center of Mass

The center of mass (COM) is the equivalent point mass of a multibody structure. The COM has
a position – as seen from the base effector – and a mass. The location of the COM is calculated
as:

pCOM =
1∑
iwi
∗
∑
i

pi ∗ wi (4.10)

wi is the mass of the i-th body and pi is its location. To calculate the COM the robot’s kinematic
structure must contain mass information in a fashion where each node contains the equivalent
mass attached to it. Because masses cannot be moved with respect to the effector they are
attached to, each mass is a static property of the overall robot.
In contrast to tasks controlling locations and orientations the COM-task does not have an end
effector which is a part of the robot’s body. What acts as the equivalent to the end effector
is a virtual effector that depends on the entirety of the robotic system. Therefore, COM-tasks
cannot be expressed with paths but they can be built recursively. By traversing from the base
node along all branches of the tree the (combined) mass each node can manipulate has to be
calculated. Depending on whether the current direction of traversal is upwards or downwards
the tree nodes can either manipulate the mass that is directly attached to them or not. The
base node, however, cannot manipulate the location of the mass that is directly attached to it
because it is a fixed property of that node.

Listing 4.2: Jacobian calculation for COM-tasks

1 def getJacobian(robot , baseNode)

2 totalMass = Mass()

3 jacobian = traverseTree(robot , baseNode , None , totalMass)

4 return jacobian * 1 / totalMass.getMass ()

5
6 def traverseTree(robot , node , prevNode , massFromSubtree):

7 jacobian = np.matrix(np.zeros ((2, robot.numDOF)))

8 for child in node.children:

9 if child != prevNode:

10 childMass = Mass()

11 jacobian += child.getForwardTransform ()[0:2 ,0:2] * \

12 traverseTree(robot , child , node , childMass)

13 massFromSubtree += \

14 childMass.applyTransform(child.getForwardTransform ())

15
16 parent = node.parent

17 if parent && parent != prevNode:

18 parentMass = Mass()

19 jacobian += node.getBackwardTransform ()[0:2 ,0:2] * \

20 traverseTree(robot , parent , node , parentMass)

21 massFromSubtree += \

22 parentMass.applyTransform(node.getBackwardTransform ())

23
24 if parent != prevNode:

25 jacobian[:,node.idx] = \

26 -activeNode ->getDerivative(massFromSubtree.position) * \

28

4.2 - Combining Jacobians – Simple Multiple Tasks

27 massFromSubtree.getMass ()

28 if prevNode:

29 massFromSubtree += node ->getMass ()

30 else:

31 if prevNode:

32 massFromSubtree += node ->getMass ()

33 jacobian[:,node.idx] = \

34 activeNode ->getDerivative(massFromSubtree.position) * \

35 massFromSubtree.getMass ()

36 return jacobian

In algorithm 4.2 a class Mass is utilized which implements the + operator to calculate the combined
mass (with the correct position and mass) of the left and right hand side arguments. A useful
feature of the Jacobian that describes the center of mass’ manipulability is that it creates an
easy way to calculate the impulse (linear momentum) of the robot as seen from an effector:

#»p = JCOM ∗ q̇ ∗
∑
i

wi (4.11)

In equation (4.11) i iterates over all masses that can be manipulated.

4.2 Combining Jacobians – Simple Multiple Tasks

When examining Jacobians – specifically their rows – it is noticeable that the orientation of
the task space is arbitrary. Each task performs identical for any invertible transformation that
is applied on the task space of the Jacobian as well as the error. If the transformation does
not have full rank tasks that solve for subspaces of the actual task space can be expressed. To
emphasize this equation (4.2) shall be recalled:

ψ̇(q) = Jq̇

with any matrix M :

Mψ̇(q) = MJq̇ (4.12)

M is the task space transformation which is not necessarily a square matrix. M can be any
matrix that maps a metric from the untransformed task space to the transformed. An option
to utilize M would be to “cut” rows from J to create a task that operates on a subset of the
base vectors spanning the original task space. In contrast to the term degrees of freedom of the
task space the remaining task space is called degrees of control of the task space. Analogous to
removing degrees of control from the task degrees of control can be added. Therefore, Jacobians
can be “stacked” on top to generate a big Jacobian Ĵ :

Ĵ =

J1

J2
...
Jn

 (4.13)

29

4.2 - Combining Jacobians – Simple Multiple Tasks

The same has to be done for the error:

ê =

e1

e2
...
en

 (4.14)

Mansard and others refer to Ĵ as augmented Jacobian [14, 17, 30] or group of tasks. Augmented
Jacobians act exactly like a single task even though the combined task space might be redundant.
Figure 4.2a displays a simple robotic system with two fingers. Here two tasks – one for each
finger – are solved simultaneously. When utilizing the augmented Jacobian even conflicting tasks
can be formulated. Figure 4.2b visualizes an example where the finger of a robot is controlled
with two tasks simultaneously. Those two tasks have different target locations thus they conflict
with each other. To understand the behavior of the inverse kinematics in this situation the loss
function L from equation (3.5) has to be recalled:

L(∆q) = ||y∗ − ψ(q + ∆q)||2C + ||∆q||2W

The term ||y∗ − ψ(q + ∆q)||2C assures that the end effector is moved to a state where the overall
error is minimized. In the given example the state minimizing L is the location right between
the two targets.

(a) Multiple tasks for a two-armed robot (b) Conflicting tasks for a single effector

Figure 4.2: Solving multiple tasks simultaneously

In Figure 4.2 the initial posture is displayed dashed. Since the solution process for (dampened)
Newton-Raphson approaches needs several iterations to reach the posture minimizing L each
iteration is displayed in grayscale; the higher the iteration number the darker the posture. For
each iteration the vector from the respective end effector to the task’s target is drawn.

30

4.2 - Combining Jacobians – Simple Multiple Tasks

The algorithm implementing inverse kinematics with combined tasks is:

Listing 4.3: Inverse kinematics algorithm with augmented Jacobians and error vectors

1 def solve_ik(robot , taskGroup , epsilon):

2 J_s = buildStackedJacobian(robot , taskGroup)

3 error = buildStackedError(robot , taskGroup)

4 dq = pinv(J_s , epsilon) * error

5 return dq

31

5 - The Stack of Tasks

Given a hierarchy of tasks:
How can tasks with a lower priority be solved without interfering

with tasks of higher priority?

The previous chapter has shown how multiple tasks can be solved simultaneously. This is useful
when dealing with complex robotic systems but does not allow expressing a hierarchy of tasks.
A hierarchy might be an ordered set of sets of tasks with the constraint:

0 = Ĵ1,i−1∆qi (5.1)

This means the change in configuration which is calculated for the i-th group of tasks must not
create a change in task space of all task groups with higher priority. Mansard et al. refer to this
hierarchy as stack of tasks[17]. The total ∆q then can be calculated as:

∆q =
∑
i

∆qi (5.2)

Equation (5.1) can also be formulated with the rangespace projector of Ji:

0 = J1,i−1
†J1,i−1∆qi (5.3)

For J1,i−1 having redundant effectors:

J1,i−1
†J1,i−1 6= I (5.4)

There are nontrivial solutions to (5.1) with ∆qi 6= 0. Namely all ∆q that reside inside the
combined nullspace of all J1,i−1. An intuitive solution to find ∆qis that satisfy (5.1) was proposed
by [6, 8–10, 12] and [14] 1:

∆qj = Ni J1,i−1
† #»e j︸ ︷︷ ︸

∆q̂

(5.5)

Ni projects the change in configuration space – when only considering the task group i ∆q̂ –
into the nullspace of J1,i−1. This satisfies the criterion (5.1):

1Chiaverino et al. and Bock et al. recognized this approach to be non-optimal.

32

5 - The Stack of Tasks

0 = Ji∆qj

0 = JiNiJj† #»e j

0 = Ji
(
I − Ji†Ji

)
Jj

† #»e j

0 =
(
Ji − JiJi†Ji

)
Jj

† #»e j

by applying (3.14)

0 = (Ji − Ji) Jj† #»e j

0 = 0Jj
† #»e j

However, (5.5) does not provide good solutions to solve the task group i as N1,i−1 can scale ∆q̂
in a way that the (5.5) does not yield the optimal ∆qj with respect to the loss function L. To
visualize the non-optimality of the proposed solution a robot arm was simulated and the results
are shown in figure 5.1. The arm had to fulfill two tasks:

• First task:
Move the finger onto a horizontal line with support point

(
1 0

)T
(the dotted line). This

line is the solution space of the first task.

• Second task:
Without violating the first task: move the finger to the location denoted with the dashed
vectors.

The second task is solved within the nullspace of the first as described in (5.5).

Figure 5.1: Non-optimal utilization of motion within the nullspace of a task with higher priority

The optimal solutions for the second task would be at the perpendicular projection of the targets
onto the solution space of the first task. But the figure shows that the further away the target
of the second task is from the line the further the finger moves away from the optimal solution.
This example is sufficient proof that (5.5) is not optimal.

33

5 - The Stack of Tasks

To find out how to utilize N in an optimal fashion and while fulfilling the constraint (5.1) one
has to revisit the loss function (3.5) from section 3.3:

L(∆q) = ||y∗ − ψ(q + ∆q)||2C + ||∆q||2W

W is the matrix that “punishes” changes for joints. The greater the entries in W the greater
the “punishment”. W can also be used to express changes of joints that have to happen in
conjunction as a linear combination. To integrate constraints into the loss function W has to
be set to N−1 as it punishes usage of joints that are already in use by other tasks. This is
advantageous as N has the following properties:

• N is Hermitian: N = N T .

• The eigenvalues of N are either 0 or 1 ⇒ eigenvalues of N−1 would be either ∞ or 1.

• The elements of each row encode joint movements that have to be performed in conjunction
(the same applies to the columns as N is Hermitian). Here the i-th row (and therefore the
i-th column) work as a linear combination in which the joints’ values have to be changed
to not violate the tasks that generate N .

• The elements along the main diagonal are in the interval [0, 1].

With those properties an entry of 0 along the main diagonal of N implies that the corresponding
row and column is filled with zeros as well. This means that any joint i for which Ni,i = 0 is
completely bound by other tasks and its value cannot be changed without creating a violation
of tasks with higher priority. Whereas Ni,i 6= 0 means that the joint i can be fully utilized
(Ni,i = 1) or only be utilized in conjunction with other joints (0 < Ni,i < 1). However, N is
generally not invertible but by integrating N into equation (3.9) it becomes clear that building
the inverse of N is not necessary.

∆q = W T−1
JT (JW T−1

JT + CT
−1

)−1 #»e

With W T = N−1:

∆q = NJT (JNJT + CT
−1

)−1 #»e (5.6)

NJT (JNJT + CT
−1

)−1 is not the pseudoinverse of J but the pseudoinverse of JN :

NJT (JNJT + CT
−1

)−1

N is idempotent: NN = N

=N TJT (JNNJT + CT
−1

)−1

=N TJT (JNN TJT + CT
−1

)−1

=(JN)T ((JN)(JN)T + CT
−1

)−1

with lim
C→∞

:

=(JN)† (5.7)

34

5.1 - Improving the Numerical Stability

Equation (5.7) can also be interpreted as a single task that provides the Jacobian J̄ = JN . In
terms of the loss function (3.5) this would be the solution to having W set to I thus there would
be no punishment for the usage of some joints. This does not conflict with (3.5) as the usability
of joints is already encoded in J̄ 2. Murray et al. have shown that the integration of N into
the least-squares solution process is the same as solving tasks of lesser priority as a constrained
optimization problem using the Lagrangian relaxation method [18].

Figure 5.2: Optimal utilization of motion within the nullspace of a task with higher priority

Figure 5.2 shows the generated postures of an inverse kinematics solver implementing (5.6). In
terms of the reduced solution space of the second task the generated locations of the finger are
in fact optimal: The second task’s target projected orthogonally onto the first tasks solution
space.

5.1 Improving the Numerical Stability

It is worth noting that the N utilized above is the dampened nullspace projector (as discussed
in section 3.4) and thus an approximation of the actual nullspace projector. This approximation
is subject to numerical inaccuracies which results in trace(N) 6∈ N (see section 3.4). Especially
for N → 0 this can lead to numerical instabilities. A mitigation strategy is to multiply N 2

to the left hand side of (JN)†. The resultant pseudoinverse becomes much more stable and
utilizable while retaining the pseudoinverse properties. To emphasize the reason why this step
is preferable the rule of L’Hôpital can be applied to show the behavior of (JN)† for N → 0.
The desired behavior is:

lim
N→0

(JN)† = 0

but:

lim
N→0

lim
ε→0
NJT (JNNJT + εI)−1 6= 0

2This also means that the workspace of the task with lesser priority is limited by N which renders investigation
of workspaces cumbersome – especially when the Jacobian that generates N is ill-conditioned [14].

35

5.2 - Combining Nullspaces

because by applying the rule of L’Hôpital :

lim
N→0

lim
ε→0
NJT (JNNJT + εI)−1 ⇒ J ∗ (2JTNJ)−1 =∞ (5.8)

However, by expanding the leftmost N to N 3:

lim
N→0

lim
ε→0
N 3JT (JNNJT + εI)−1 ⇒ 3JN 2 ∗ (2JTNJ)−1 ⇒ 4NJT ∗ (2JJT)−1 = 0 (5.9)

With this addition the numerical stability can be greatly improved. And since N is idempotent
this approach is optimal with respect to the loss function L introduced in section 3.3.

5.2 Combining Nullspaces

Finding the combined nullspace projector of several matrices is necessary when the stack of
tasks becomes big. The combined nullspace projector is a matrix that projects any vector into
all nullspaces spanned by all Jacobians of more prioritized tasks. When solving for the i-th group
of tasks all task groups j with j < i shall not be violated. This combined nullspace projector
has to fulfill:

∀j < i, #»p :

0 = JjNi #»p

The trivial way to achieve this is to calculate Ni by using the augmented Jacobian of all j < i:

Ĵ =

J1
...
Jj

Ni = I − Ĵ†Ĵ (5.10)

Mansard et al. proposed a recursive algorithm to calculate Ni that is computationally signifi-
cantly faster[30]:

Ni = Ni−1 − (JiNi−1)†JiNi−1︸ ︷︷ ︸
Mi

(5.11)

The above algorithm works by subtracting the range projector of the i-th group of tasks from
the available solution space for each iteration. This successively reduces the joint solution space
– which is the nullspace. However, it is not numerically stable when any J is ill-conditioned
as JiNi−1 might contain base vectors of minuscule lengths or when i becomes big. The core
problem in (5.11) is the subtraction of the range projector of JiNi−1 from Ni−1. Any numerical
error introduced in the calculation of Mi will introduce more numerical errors into nullspace
projector in which tasks of lower priorities are solved in. More generally, when working with
big stacks of tasks this algorithm – and any other algorithm that works accumulatively – will
not perform well. Even adjusting (5.11) as proposed in (5.9) the numerical stability cannot
be guaranteed as the algorithm would still rely on an accumulated difference. The numerically
stable calculation of Ni is described in (5.10).
A simple implementation of the inverse kinematics solver proposed with (5.6) is:

36

5.2 - Combining Nullspaces

Listing 5.1: Simple inverse kinematics algorithm incorporating the stack of tasks

1 def solve_ik(robot , taskStack , epsilon , nullspaceEpsilon):

2 numCols = robot.getDOF ()

3 I = np.matrix(np.eye(numCols , numCols))

4 q = robot.getConfiguration ()

5 J_c = np.matrix(np.zeros(0, numCols))

6 for i in range(0, len(taskStack)):

7 Ny = I - pinv(J_c , nullspaceEpsilon) * J_c

8 jacobian = buildStackedJacobian(robot , [taskStack[i]])

9 error = buildStackedError(robot , taskStack[i])

10 dq = Ny * Ny * pinv(jacobian * Ny, epsilon) * error

11 q += dq

12 J_c = np.concatenate ((J_c , jacobian))

13
14 def buildStackedJacobian(robot , taskGroups):

15 j = np.matrix(np.zeros((0, robot.getDOF ()))

16 for taskGroup in taskGroups:

17 for task in taskGroup:

18 j = np.concatenate ((j, task.getJacobian ()))

19 return j

20
21 def buildStackedError(robot , taskGroup):

22 e = np.matrix(np.zeros((0, 1))

23 for task in taskGroup:

24 e = np.concatenate ((e, task.getError ()))

25 return e

N is derived from J_c while in each loop J_c is augmented with the current loop’s Jacobian.
Each Jacobian that is calculated within the loop is solely dependent on the initial posture of
the robot. However, while iterating over the stack of tasks the algorithm produces intermediate
changes in the robot’s posture that will be performed anyway. That is when calculating ∆qi

the value of
j<j∑
j

∆qj is already known but neither utilized in the generation of the i-th Jacobian

nor in the nullspace in which the i-th group has to be solved in. While this algorithm is valid
it is not optimal and can be improved by recalculating all Jacobians that are utilized within
each iteration of the loop. A better implementation is depicted in listing 5.2. Here the robot’s
posture is adjusted each time a ∆qi is calculated. Because Jacobians are dependent on q they
have to be recalculated for the next group of tasks. This process yields better results and faster
rate of convergence.

Listing 5.2: Improved inverse kinematics algorithm

1 def solve_ik(robot , taskStack , epsilon , nullspaceEpsilon):

2 numCols = robot.getDOF ()

3 I = np.matrix(np.eye(numCols , numCols))

4 q = robot.getConfiguration ()

5 for i in range(0, len(taskStack)):

6 J_c = buildStackedJacobian(robot , taskStack [0:i])

7 Ny = I - pinv(J_c , nullspaceEpsilon) * J_c

8 jacobian = buildStackedJacobian(robot , [taskStack[i]])

9 error = buildStackedError(robot , taskStack[i])

10 q += Ny * Ny * pinv(jacobian * Ny , epsilon) * error

11 robot.setConfiguration(q)

37

6 - Loopy Robots - Linear Constraints

How can inverse kinematics be applied to robots with nontrivial structures?

The previous chapters of this thesis rely on robots having a treelike structure. However, in real
world applications this is not always the case. When dealing with robots that have multiple
arms and need to interact with an object using both hands the robot becomes loopy as soon
as the hands hold on the same object or each other [31]. Another case for loopy robots are
humanoid robots that stand on the ground with both feet. Here the ground connects both feet.
Even though the feet could slide on the floor it should be avoided. As long as both feet connect
to the ground the desired behavior is to have both feet at a fixed position and rotation with
respect to each other [30].

1

2

3

4

5

Figure 6.1: A loopy robot with rhomboid enforced structure

Figure 6.1 shows a robot with five revolute joints where four of its joints enforce a structure that
resembles a rhomboid. This robot can also be described with a loop-free topology (see figure
6.2) and additional constraints that keep the node 2′ congruent and oriented parallel to node 2.
Those constraints are expressed as a location task that keeps the location of node 2′ at position(
0 0

)T
as seen from node 2 in combination with an orientation task that fixes the orientations

of both nodes as well. With those constraints any other task that introduces movement in the
robots structure is solved within the nullspace of both constraining tasks.

38

6 - Loopy Robots - Linear Constraints

1

2

3

4

5

2′

Figure 6.2: Tree structure of a loopy robot

Figure 6.2 shows the same robot as in figure 6.1 without the constraints to emphasize the robot’s
basic tree structure. The ability to build loopy robotic systems also enables the construction of
nontrivial joints; structures consisting of multiple revolute and/or prismatic joints working in
conjunction thus forming a single more complex joint. The rhomboid-like joint in figure 6.1 is
such a case. When building a robot with that kind of structure a single motor can be attached
anywhere on one of the joints 1 to 4 controlling the whole rhomboid structure simultaneously.
To find out how many degrees of control are needed to fully control a loopy subsystem trace
of the range projector of the combined task for the constraints Mc can be used. In the given
example the range projector is:

Mc = J†
cJc

=

0.75 0.25 −0.25 −0.25 0
0.25 0.75 0.25 0.25 0
−0.25 0.25 0.75 −0.25 0
−0.25 0.25 −0.25 0.75 0︸ ︷︷ ︸

∗1

0 0 0 0 0︸︷︷︸
∗2

• ∗1: This submatrix reflects that joints 1 to 4 have to be changed as a linear combination

to not violate the constraints.

• ∗2: This column corresponds to the joint 5 that is not part of the loopy subsystem.

As the loop in this example consists of four joints and trace(Mc) = 3 there is a rank defect of
1. This means that the loopy part of the robot’s structure resembles a single degree of freedom
and therefore can be completely controlled by attaching a single motor on any joint on the loop.
Also, because the constraints for the loopy system can be fully described with a matrix – a linear
transformation – for any q those constraints are linear constraints.

39

7 - Nonlinear Constraints

How can joint limits be reflected in inverse kinematics?

Nonlinear constraints – or unilateral constraints – are derived from nonlinear functions e.g.,
limits of joint values. When the inverse kinematics finds a solution to adjust a posture the
solution might violate those constraints. That happens for instance when an arm is bent in a
way it is not supposed to be bent or when a piston joint is stretched beyond its limits.

-π -π2 0 π
2

π

-π2

0

π
2

q

er
ro
r

Figure 7.1: Error function for nonlinear constraints

Figure 7.1 displays an exemplary error function for a joint where the valid values are in the

interval
[
−pi

2 ,
pi
2

]
. The function’s output is the change that has to be performed on that joint to

move the joint’s value into the correct interval. This function is continuous but not continuously
differentiable. However, joint limits are very common and should be taken care of when solving
for inverse kinematics because movements beyond those limits might damage the robot.
To integrate unilateral constraints into the solution process of inverse kinematics a function has
to be implemented that returns a vector qe containing the error for each joint. This function
resembles the function displayed in 7.1 but for each element in q and with different parameters for
each joint. Mansard et al. [17] proposed a technique to integrate an activation matrix H ∈ Rn×n:

H = diag(h1, h2, . . . , hn)

where:

hi =

{
1, if qe 6= 0

0, otherwise
(7.1)

40

7 - Nonlinear Constraints

It is worth emphasizing that their approach integrates unilateral constraints into the control
law derived from inverse kinematics. This is not the same as integration into general inverse
kinematics as control is usually expressed in forces (torques) or speeds but not values (e.g.,
angles). But the approach proposed by Mansard et al. can be used as a starting point to build
a concept of how unilateral constraints can be integrated into general inverse kinematics.
The above introduced activation matrix H is then utilized to build a modified Jacobian for any
task that should be solved for:

J†H =
∑

P∈P(m)

(
∏
i∈P

hi)
∏
j 6∈P

(1− hi)J†
P (7.2)

In equation (7.2) P(m) denotes the power set of the set of all integers ranging from 1 to m. m
is the amount of degrees of freedom of the robot. The idea behind this equation is to suppress
degrees of freedom if they are subject to errors in configuration space. This happens when joint
limits are violated. With this the control output is calculated as:

q̇ = J†H ∗ ė (7.3)

In terms of control law this approach is valid as it is applied continuously and there exist no
time discrete steps where the control process coerces a joint to move beyond its boundaries of
valid configurations. However, to build an inverse kinematics solver that can solve for postures
the process of finding a valid solution is not continuous. Also, for robotic systems with many
degrees of freedom the equation (7.2) results in computationally unfeasible performance.
Another approach to resolve joint limits was proposed by Chan et al. [8] and Dietrich et al. [29].
They implement a scheme to avoid joint limits by incorporating a weighted least-norm solver.
The idea is to dampen joint’s movements when they are near their respective limits and reflect
this within a matrix that is similarly incorporated as N in the previous chapters. The drawback
in their approach is that by dampening joints near their respective limits the actual workspace
of robots is limited or at least the rate of convergence is reduced.
Generally there is no trivial way to integrate nonlinear constraints into least-squares inverse
kinematics because the foundation of the later resides on the linearity of the local derivative.
But when any qi is at the corresponding joint limit the local tangent would be different depending
on the change that is applied on qi by further iterations. If the lower limit of joint i is set to 0
and the current value is 0 then ∆qi >= 0 would be valid but a change where ∆qi < 0 needs to
be avoided in any event. This cannot be expressed using matrices due to their linear nature.
Therefore, each ∆q has to be tested whether the resultant posture qt+1 = ∆q + qt violates any
constraint or not. Given the assumption the robotic system is not violating any constraint when
being at posture qt but qt+1 violates one or more constraints the error was introduced by ∆q.
Hence, ∆q has to be adjusted to resolve the error. This leads to qt+q being free of errors. A
simple way to resolve this would be to backtrack the error introduced with ∆q. To achieve this
the error can be transformed into an error in task space – this can be done since the error was
introduced by solving for a task in the first place:

et = J ∗ qe (7.4)

et then can be reprojected into configuration space along the solution direction of the current
task by applying:

∆q̂e = J†J ∗ qe (7.5)

41

7 - Nonlinear Constraints

Here ∆q̂ is the change that has to be applied to ∆q to resolve the constraints. But due to the
nonlinear nature of the error function the resultant qt + ∆q + ∆q̂e does not necessarily resolve
the issue of being free of errors or at the configuration where the joint limits are just reached. In
addition, it does not guarantee that by backtracking along the direction of J†Jqe the resultant
task error is less than the initial task error at qt. A better approach is to iteratively backtrack
for each introduced qei starting at the greatest entry of qe along the direction of ∆q until all
errors introduced by constraints are resolved. After the backtracking the last joint for which
the backtracking had to be performed is “fixed” and the process of solving the task is repeated
using the remaining free degrees of freedom by incorporating a modified N matrix that reflects
fixed joints.

Listing 7.1: Backtracking algorithm

1 def backtrack(dq , q)

2 idx = -1

3 q += dq

4 q_e = calculateQError(q)

5 while (abs(q_e) > 0).any():

6 idx = abs(q_e).argmax ()

7 f = dq_[idx ,0] / q_err[idx , 0]

8 q_corrected = dq * 1 / f

9 q += q_corrected

10 q_e = calculateQError(q)

11 return idx

Algorithm 7.1 points out how to perform the backtracking. Note that the arguments dq and q

are passed as references. Within the while-loop ∆q is backtracked along the greatest entry of qe
which is then repeated for all remaining errors. Under the assumption that the error function
for each joint is built as depicted in figure 7.1 the last iteration of the loop guarantees that
the joint for which the last backtacking step was executed is right at its limit. Furthermore,
the configuration vector qi+q (denoted in the code as q) is changed in a way that the error is
resolved.
The integration in the inverse kinematics solving algorithm then is:

Listing 7.2: Inverse kinematics solver incorporating the stack of tasks and nonlinear constraints

1 def solve_ik(robot , taskStack , epsilon , nullspaceEpsilon):

2 numDOF = robot.getDOF ()

3 dq = np.matrix(np.zeros ((numDOF , 1)))

4 q = robot.getConfiguration ()

5 I = np.matrix(np.eye(numDOF , numDOF))

6 for i in range(len(taskStack)):

7 extraConstraints = np.matrix(np.zeros((numDOF , numDOF)))

8 while True:

9 if np.sum(np.diag(extraConstraints , 0)) == numDOF:

10 break

11 robot.setConfiguration(q)

12 J_c = buildStackedJacobian(robot , tasks [0:i])

13 J_c = np.concatenate ((J_c , extraConstraints))

14 Ny = I - pinv(J_c , nullspaceEpsilon) * J_c

15 jacobian = buildStackedJacobian(robot , [taskStack[i]])

16 error = buildStackedError(robot , taskStack[i])

17 dq = Ny * Ny * pinv(jacobian * Ny, epsilon) * error

42

7 - Nonlinear Constraints

18 q += dq

19 q_e = calculateQError(q)

20 if (abs(q_err) > 0).any():

21 idx = backtrack(q, dq)

22 extraConstraints[idx , idx] = 1

23 else:

24 break

25 robot.setConfiguration(q)

26 return q

45°

-45° -45°

-9.14°

Figure 7.2: Unilateral constraints

Figure 7.2 is generated by the algorithm shown in listing 7.2. Here the robot arm performs two
tasks while respecting the joint limits on each joint:

• Move the finger onto the dotted line.

• Without violating the first task move the finger to the position denoted with the dashed
arrows.

The joint limits are set to the interval [−45°, 45°] except for the first joint where it is [45°, 90°].
Figure 7.2 shows that when the target of the second task is set out of reach the position of the
robot’s finger rests at the nearest configuration (displayed as the bottommost posture) to the
target without bending the joints beyond the respective limits.

43

8 - Conclusion and Future Work

The contribution of this work is the conclusive derivation of the dampened least-squares ap-
proach to inverse kinematics. This derivation is based on a loss function which also acts as a
quality measure as well as means to prove extensions for optimality. Furthermore, an extension
to improve numerical stability, an extension to handle loopy robots and an approach to handle
nonlinear constraints are introduced with this work.

Forward kinematics lay the foundation to compute the Jacobian matrices and error vectors for
different task types as shown in chapters 2 to 4. With this the ability to calculate static and
dynamic properties of arbitrary robots is implemented. Chapter 3 is the main part of this work
where the Newton-Raphson gradient descent is outlined. This gradient descent technique is then
utilized to minimize the square loss function L. L acts as metric that is used in the later chap-
ter to test extensions of inverse kinematics against optimality. This chapter also shows that the
dampened Moore-Penrose pseudoinverses of Jacobian matrices are the key to solve the inverse
kinematics problem. How hierarchies of tasks can be expressed is shown in chapter 5. This
hierarchy can be utilized to extend inverse kinematics to nontrivial robot structures e.g., loopy
robots. Lastly, to avoid movements that cannot be performed on joint level the framework can
be extended to incorporate joint-limit constraints.

Future Work

While the dampened least-squares approach to inverse kinematics is very versatile there are still
properties that can be improved: When a task’s target is outside its workspace the gradient
descent will not converge stably (see 3.3). Also, the choice of the dampening factor ε is cumber-
some. A high dampening appears to counter the instability of convergence when a task’s target
is out of reach but increasing the dampening mitigates this only up to a certain extend. In
addition, the overall rate of convergence is highly impacted by the dampening factor (as shown
in figure 3.5). This work focuses rigid robotic systems. Real world robots might contain springs
or other deformable parts that cannot be modeled with the means introduced in this thesis.

44

Bibliography

[1] Roy Featherstone and David Orin. “Chapter 2: Dynamics”. In: Springer Handbook of
Robotics (2008) (cit. on pp. 2, 3).

[2] David Orin and William W Schrader. “Efficient computation of the Jacobian for robot
manipulators”. In: The International Journal of Robotics Research 3.4 (1984), pp. 66–75
(cit. on pp. 4, 24).

[3] C. W. Wampler. “Manipulator Inverse Kinematic Solutions Based on Vector Formulations
and Damped Least-Squares Methods”. In: IEEE Transactions on Systems, Man and Cy-
bernetics 16.1 (Jan. 1986), pp. 93–101. issn: 0018-9472. doi: 10.1109/TSMC.1986.289285
(cit. on pp. 8, 11, 14).

[4] K Waldron et al. “Springer handbook of robotics”. In: Springer, Berlin, Heidelberg, New
York (2008) (cit. on p. 10).

[5] Donald Lee Pieper. The kinematics of manipulators under computer control. Tech. rep.
DTIC Document, 1968 (cit. on p. 11).

[6] G. Antonelli. “Stability Analysis for Prioritized Closed-Loop Inverse Kinematic Algorithms
for Redundant Robotic Systems”. In: IEEE Transactions on Robotics 25.5 (Oct. 2009),
pp. 985–994. issn: 1552-3098. doi: 10.1109/TRO.2009.2017135 (cit. on pp. 14, 32).

[7] Layale Saab et al. “Dynamic whole-body motion generation under rigid contacts and other
unilateral constraints”. In: Robotics, IEEE Transactions on 29.2 (2013), pp. 346–362 (cit.
on p. 14).

[8] Tan Fung Chan and Rajiv V Dubey. “A weighted least-norm solution based scheme for
avoiding joint limits for redundant joint manipulators”. In: Robotics and Automation,
IEEE transactions on 11.2 (1995), pp. 286–292 (cit. on pp. 14, 32, 41).

[9] Oliver Brock, Oussama Khatib, and Sriram Viji. “Task-consistent obstacle avoidance and
motion behavior for mobile manipulation”. In: Robotics and Automation, 2002. Proceed-
ings. ICRA’02. IEEE International Conference on. Vol. 1. IEEE. 2002, pp. 388–393 (cit.
on pp. 14, 32).

[10] Joel W Burdick. “On the inverse kinematics of redundant manipulators: Characterization
of the self-motion manifolds”. In: Advanced Robotics: 1989. Springer, 1989, pp. 25–34 (cit.
on pp. 14, 32).

[11] Samuel R Buss and Jin-Su Kim. “Selectively damped least squares for inverse kinematics”.
In: journal of graphics, gpu, and game tools 10.3 (2005), pp. 37–49 (cit. on pp. 14, 18).

[12] Yu-Che Chen and Ian D Walker. “A consistent null-space based approach to inverse kine-
matics of redundant robots”. In: Robotics and Automation, 1993. Proceedings., 1993 IEEE
International Conference on. IEEE. 1993, pp. 374–381 (cit. on pp. 14, 32).

45

http://dx.doi.org/10.1109/TSMC.1986.289285
http://dx.doi.org/10.1109/TRO.2009.2017135

Bibliography

[13] Stefano Chiaverini. “Singularity-robust task-priority redundancy resolution for real-time
kinematic control of robot manipulators”. In: Robotics and Automation, IEEE Transac-
tions on 13.3 (1997), pp. 398–410 (cit. on pp. 14, 19).

[14] Stefano Chiaverini, Giuseppe Oriolo, and Ian D Walker. “Kinematically Redundant Manip-
ulators”. In: Springer Handbook of Robotics. Springer, Jan. 1, 2008. isbn: 9783540239574.
doi: 10.1007/978-3-540-30301-5_12 (cit. on pp. 14, 30, 32, 35).

[15] Wankyun Chung, Li-Chen Fu, and Su-Hau Hsu. “Motion Control”. In: Springer Handbook
of Robotics. Springer, Jan. 1, 2008. isbn: 9783540239574. doi: 10.1007/978-3-540-
30301-5_7 (cit. on p. 14).

[16] Oussama Khatib et al. “Whole-body dynamic behavior and control of human-like robots”.
In: International Journal of Humanoid Robotics 1.01 (2004), pp. 29–43 (cit. on p. 14).

[17] Nicolas Mansard, Oussama Khatib, and Abderrahmane Kheddar. “A Unified Approach to
Integrate Unilateral Constraints in the Stack of Tasks”. In: IEEE Transactions on Robotics
25.3 (June 2009), pp. 670–685. issn: 1552-3098. doi: 10.1109/TRO.2009.2020345 (cit. on
pp. 14, 30, 32, 40).

[18] Richard M Murray et al. A mathematical introduction to robotic manipulation. CRC press,
1994 (cit. on pp. 14, 15, 18, 35).

[19] Hamid Sadeghian et al. “Task-space control of robot manipulators with null-space com-
pliance”. In: Robotics, IEEE Transactions on 30.2 (2014), pp. 493–506 (cit. on p. 14).

[20] Luis Sentis and Oussama Khatib. “Prioritized multi-objective dynamics and control of
robots in human environments.” In: Humanoids. 2004, pp. 764–780 (cit. on p. 14).

[21] B. Siciliano and J.-J. E. Slotine. “A general framework for managing multiple tasks in
highly redundant robotic systems”. In: Advanced Robotics, 1991. ’Robots in Unstructured
Environments’, 91 ICAR., Fifth International Conference on. June 1991, 1211–1216 vol.2.
doi: 10.1109/ICAR.1991.240390 (cit. on p. 14).

[22] D. E. Whitney. “Resolved Motion Rate Control of Manipulators and Human Prostheses”.
In: IEEE Transactions on Man-Machine Systems 10.2 (June 1969), pp. 47–53. issn: 0536-
1540. doi: 10.1109/TMMS.1969.299896 (cit. on p. 14).

[23] Marc Toussaint. Robotics Lecture 2013. online. Accessed 2015-03-28. url: https://ipvs.
informatik.uni-stuttgart.de/mlr/marc/teaching/13-Robotics/02-kinematics.

pdf (cit. on pp. 14, 16).

[24] Michael Gienger, Marc Toussaint, and Christian Goerick. “Task maps in humanoid robot
manipulation”. In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Interna-
tional Conference on. IEEE. 2008, pp. 2758–2764 (cit. on p. 15).

[25] Max A Woodbury. “Inverting modified matrices”. In: Memorandum report 42 (1950),
p. 106 (cit. on p. 16).

[26] Roger Penrose. “A generalized inverse for matrices”. In: Proc. Cambridge Philos. Soc.
Vol. 51. 3. Cambridge Univ Press. 1955, pp. 406–413 (cit. on p. 17).

[27] Gene Golub and William Kahan. “Calculating the singular values and pseudo-inverse of
a matrix”. In: Journal of the Society for Industrial and Applied Mathematics, Series B:
Numerical Analysis 2.2 (1965), pp. 205–224 (cit. on p. 18).

46

http://dx.doi.org/10.1007/978-3-540-30301-5_12
http://dx.doi.org/10.1007/978-3-540-30301-5_7
http://dx.doi.org/10.1007/978-3-540-30301-5_7
http://dx.doi.org/10.1109/TRO.2009.2020345
http://dx.doi.org/10.1109/ICAR.1991.240390
http://dx.doi.org/10.1109/TMMS.1969.299896
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-Robotics/02-kinematics.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-Robotics/02-kinematics.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-Robotics/02-kinematics.pdf

Bibliography

[28] Lars Eldén. “A weighted pseudoinverse, generalized singular values, and constrained least
squares problems”. In: BIT Numerical Mathematics 22.4 (1982), pp. 487–502 (cit. on
p. 18).

[29] A. Dietrich, A. Albu-Schaffer, and G. Hirzinger. “On continuous null space projections for
torque-based, hierarchical, multi-objective manipulation”. In: Robotics and Automation
(ICRA), 2012 IEEE International Conference on. May 2012, pp. 2978–2985. doi: 10.

1109/ICRA.2012.6224571 (cit. on pp. 18, 41).

[30] Nicolas Mansard et al. “A versatile generalized inverted kinematics implementation for
collaborative working humanoid robots: The stack of tasks”. In: Advanced Robotics, 2009.
ICAR 2009. International Conference on. IEEE. 2009, pp. 1–6 (cit. on pp. 30, 36, 38).

[31] A. M. Zanchettin and P. Rocco. “Dual-arm redundancy resolution based on null-space
dynamically-scaled posture optimization”. In: Robotics and Automation (ICRA), 2012
IEEE International Conference on. May 2012, pp. 311–316. doi: 10.1109/ICRA.2012.
6224599 (cit. on p. 38).

47

http://dx.doi.org/10.1109/ICRA.2012.6224571
http://dx.doi.org/10.1109/ICRA.2012.6224571
http://dx.doi.org/10.1109/ICRA.2012.6224599
http://dx.doi.org/10.1109/ICRA.2012.6224599

	Introduction
	Forward Kinematics
	Representations of Rigid Robotic Systems
	Homogeneous Transformations
	Logic Representation of Articulated Systems
	Workspaces

	Inverse Kinematics
	Related Work
	Newton-Raphson
	Derivation
	Moore-Penrose Pseudoinverses

	Jacobians
	Programmatic Generation of Jacobians
	Configuration Tasks
	Pathed Tasks
	Location and Orientation Tasks
	Dynamics Tasks - Center of Mass

	Combining Jacobians – Simple Multiple Tasks

	The Stack of Tasks
	Improving the Numerical Stability
	Combining Nullspaces

	Loopy Robots - Linear Constraints
	Nonlinear Constraints
	Conclusion and Future Work

